

Nanostrength® Block Copolymers for Wind Energy

Robert J. Barsotti, Alexandre Alu, Grady Bentzel, Phil Allen, Noah Macy, Scott Schmidt and Michael O. Wells

Nanostrength® for Wind Energy

Arkema overview

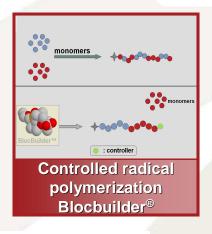
Nanotechnology platform at Arkema

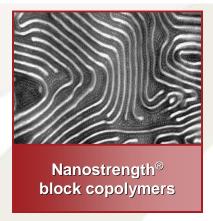
Triblock copolymers for wind energy adhesives

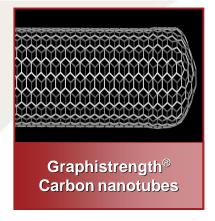
Nanostrength® triblock copolymers

Diblock copolymers for wind blade composites

 Toughening in epoxy and vinyl ester resins (VER) for infusion applications

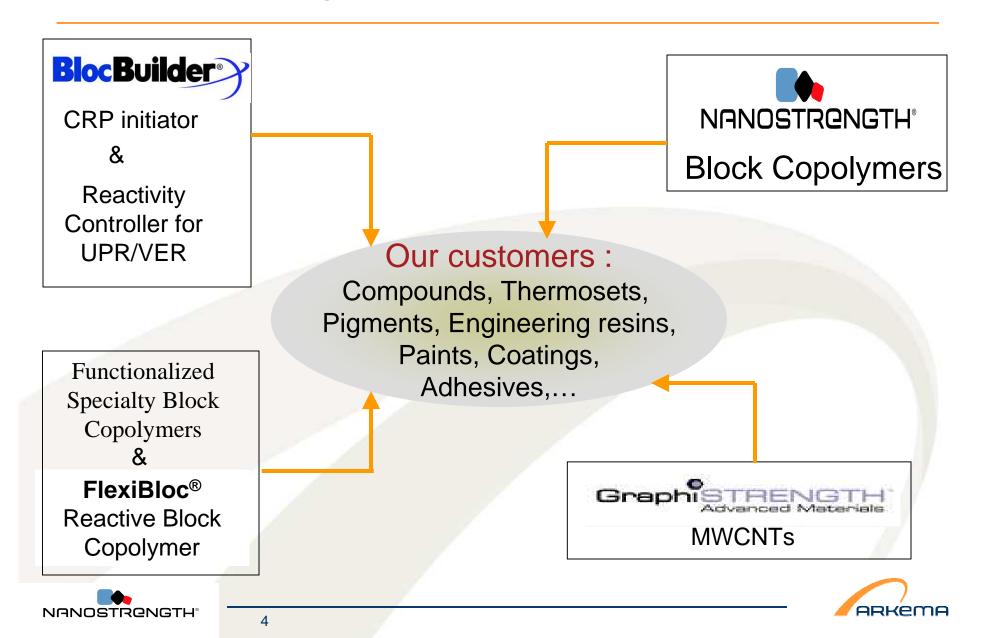



Arkema Overview


- Arkema
 - •Sales: \$6.0 B (2009)
 - •13,800 Employees
 - 6 R&D Centers (France, US, Japan)
 - Products include: PMMA, Fluorochemicals,
 Fluoropolymers, Polymer Additives,
 Hydrogen Peroxides, Organic Peroxides

- Arkema Inc. (North America)
 - •1,935 Employees
 - Corporate HQ: Philadelphia, PA
 - R&D: King of Prussia, PA
 - 20 Manufacturing Locations
 - www.arkema-inc.com

R&D – Driving Product Innovation



Nanotechnology Platform at Arkema

Triblock copolymers for Wind Energy Adhesives

Nanostrength® Triblock Polymers

Controlled Radical Polymerization (CRP) →

MAM

Poly[(Methyl)methacrylate] -b- poly(Butyl Acrylate) -b- poly[(Methyl)methacrylate]

F-MAM

Functional comonomers can be added (AA, MAA, PEGMA, HEMA) to any block

Anionic polymerization →

SBM

Block Copolymers for Thermoset Toughening

Nanostrength® Value Drivers

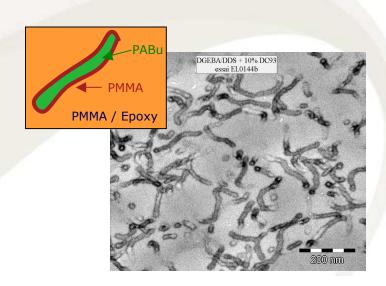
- Balance of properties: Increased resistance to crack propagation while maintaining Tg, modulus, strength, UV and thermal properties.
- Novel nanostructuration: Improved toughening.
- Nanoscale size: Toughening of thin adhesive bond lines and composites with small inter-fiber spacing (critical for infusion)
- Ease of Processing: Additive dissolves in resin

Nanostrength® Applications

- Composites: (Wind, Construction, Industrial, Aerospace, Military, Sporting Goods)
- Structural Adhesives: (Wind, Transportation, Industrial, B&C)
- Electronic Materials (Printed Circuit Boards, Adhesives)

- -Affinity between epoxy monomers and PMMA
- Repulsion between epoxy monomers and the middle block(s)
- → Nanophase separation of PBuA blocks:

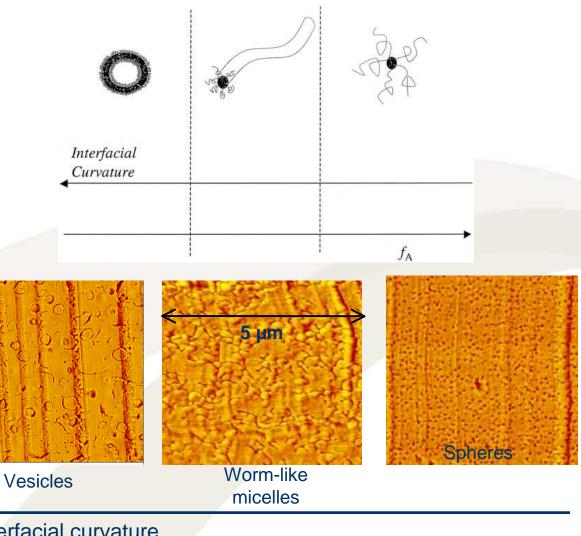
Modifier morphology in cured epoxy dependent on:


- Crosslinking/Resin chemistry
- Block Copolymer Chemistry

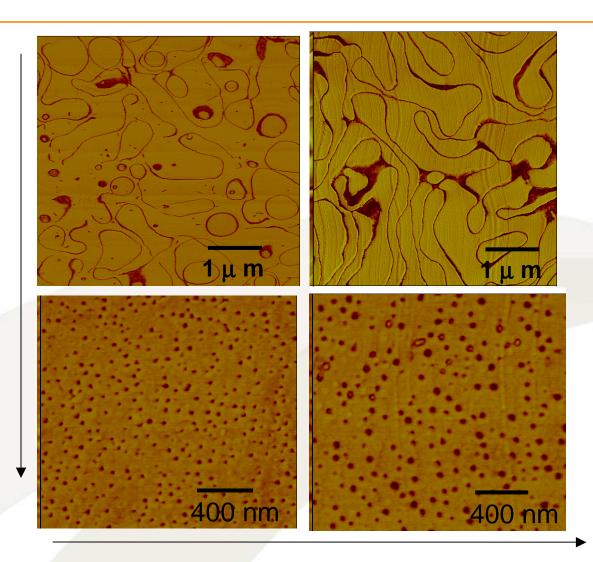
M52, M53: PMMA-block-PBuA-block-PMMA

Best performance with less polar curatives (polyetheramines, M-DEA)

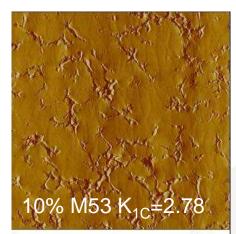
M52N: DMA functionalized MAM (Dicy, DDS)


Best performance with more polar curatives

Block Ratio Dictates Morphology

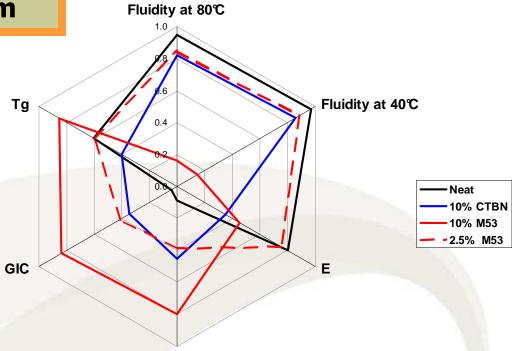


Increasing polarity of miscible block


Increasing immiscible block length

Wind Energy Adhesive System

DGEBA + Jeffamine® T403



agglomeration for exceptional toughening

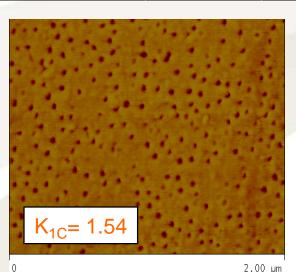
web"

M53 or E21

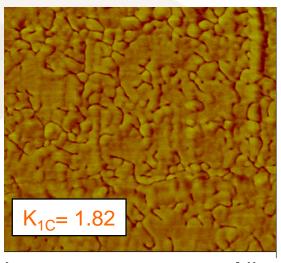
give "spider

		M53		CTBN		
Loading Level	K1C	G1C	Tg	K1C	G1C	Tg
0%	0.76	183	92	0.76	183	92
2.5%	1.66	1873	92			All .
5%	1.71	1933	92			
7.5%	1.95	2348	93			M
10.00%	2.78	3437	97	1.98	1640	85

KIC



10.0 UM


Intermediate Tg systems: DGEBA + DICY

	M52N		CTBN	
Loading Level	K1C	Tg	K1C	Tg
0%	0.88 +- 0.1	148.1	0.88 +- 0.1	148.1
2.50%	1.32 +- 0.12	146.4	1.03 +- 0.12	TBD
5.00%	1.64 +- 0.08	144.2	1.32 +- 0.12	139.1
10.00%	1.82 +- 0.11	135.4	1.62 +- 0.08	129.2

- Excellent toughening at equivalent loadings
- Equivalent toughening at lower loadings

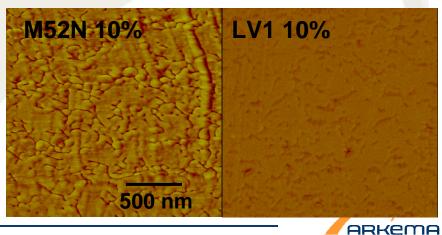
Nanospherical micelles for transparency (exp. grade)

M52N gives worm-like micelle structure for excellent toughening

ARKEMA

Diblock copolymers for wind blade composites

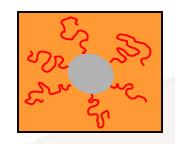
Triblocks vs Diblocks

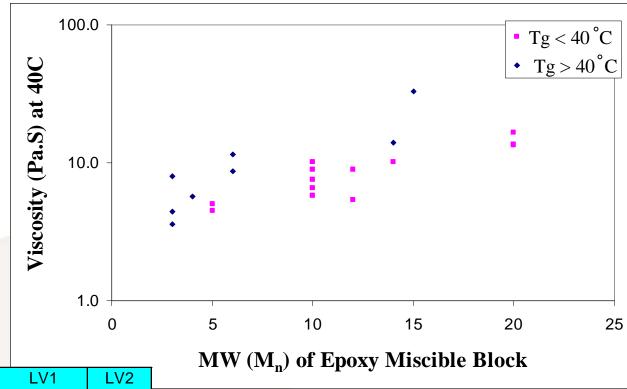

Triblock

Diblock

Dicyandiamide cured	M52N (10%)	LV1 (10%)
K _{1C} (MPa.m ^{1/2})	1.82	1.86
G _{1C} (J.m ⁻²)	1867	1552
Tg by DMA (℃)	135.4	128.4
Viscosity (Pa.s) at 40°C	28.6	14.0

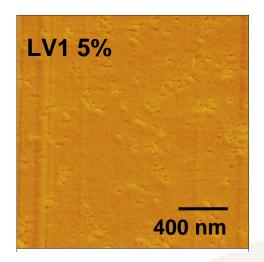
.....LV1 (Diblock) 1000 — Neat 100 Viscosity (Pa.s) — M52N (Triblock) 10 0.1 0.01 20 30 50 40 60 70 80 Temp (°C)

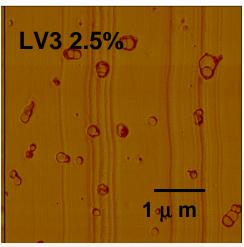

Diblock gives similar mechanical and thermal performance with ½ of the viscosity increase

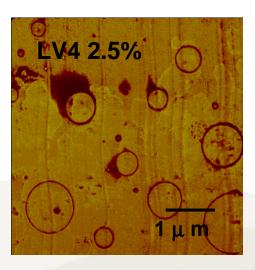


Low MW, Low Tg Miscible Blocks

Use of Low MW and Low Tg miscible blocks further reduces viscosity


Dicyandiamide cured	M52N (10%)	LV1 (10%)	LV2 (10%)
K _{1C} (MPa.m ^{1/2})	1.82	1.86	1.89
G _{1C} (J.m ⁻²)	1867	1552	1778
Tg by DMA (℃)	135.4	128.4	127.7
Viscosity (Pa.s) at 40°C	28.6	14	7.45

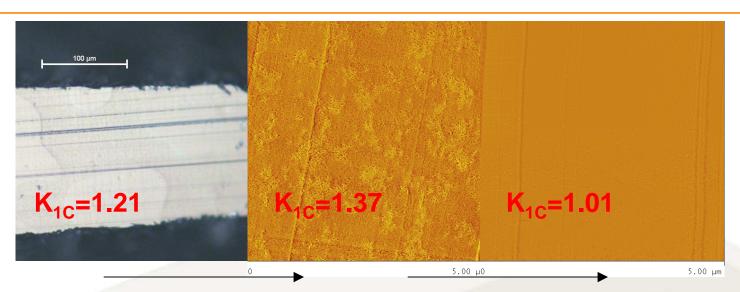

LV2 offers comparable thermal and mechanical properties at even lower viscosity



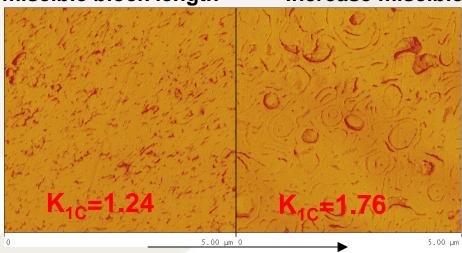
Epoxy Infusion Systems

•Impressive increases in fracture toughness at 2.5% loading with nano-worm or vesicle structures

	NEAT	LV1 (5%)	LV1(2.5%)	LV3 (2.5%)	LV4 (2.5%)
K _{1C} (MPa.m ^{1/2})	0.98	2.50	2.07	2.66	2.33
G _{1C} (J.m ⁻²)	481	3533	1999	4375	3258
Viscosity (Pa.s) at 25 ^o C	0.99	3.05	1.72	1.34	1.37
Tg by DMA (℃)	93.4	93.1	TBD	90.8	90.4


	NEAT	LV1(2.5%)	LV3 (2.5%)
Tensile Strain @ Break	2.45%	5.19%	4.32%
Tensile Stress @ Yield (MPA)	55	75	70
Tensile Modulus (MPA)	2663	2469	2390

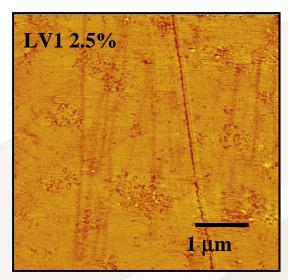
•Significant improvements in elongation at break and tensile stress

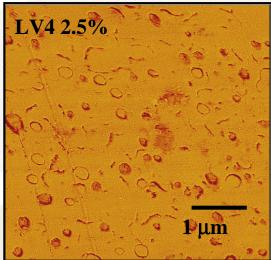

High Tg miscible block

Increase miscible block length

Increase miscible block polarity

Low Tg miscible block




Increase immiscible block length

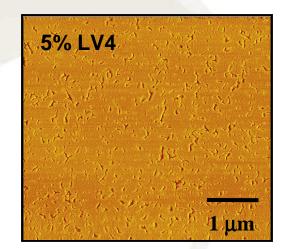
VER Infusion Systems

MEKP Cured	NEAT	LV1 (2.5%)	LV4 (2.5%)
K _{1C} (MPa.m ^{1/2})	0.51	1.04	1.17
G _{1C} (J.m ⁻²)	214	629	787
Tensile Strain @ Break	0.84%	1.15%	2.21%
Tensile Stress @ Yield (MPA)	27	30	53
Tensile Modulus (MPA)	2897	2776	2741
Viscosity (Pa.s) at 25°C	0.15	0.48	0.42

- •Nanostructured rubber domains increase fracture toughness, tensile elongation at break and tensile stress at 2.5% loading
- •Improvements in fracture toughness seen at very low loadings

Cook Composite
Epovia KRF1001 VE resin

MEKP Cured	NEAT	LV1 (1.25%)	LV4 (1.25%)	LV4 (0.625%)
K _{1C} (MPa.m ^{1/2})	0.51	0.9	1.15	1.05
G _{1C} (J.m ⁻²)	214	573	801	667
Viscosity (Pa.s) at 25℃	0.15	0.28	0.28	0.22

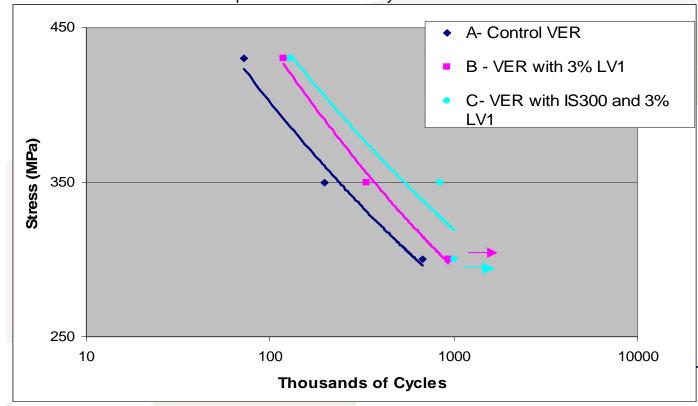

VER Infusion Systems

•IS300: Peroxide mixture using Arkema's BlocBuilder® technology allowing for controlled curing during infusion at elevated temperatures

	NEAT	LV1 (5%)	LV4 (5%)
K _{1C} (MPa.m ^{1/2})	0.72	1.89	2.17
G _{1C} (J.m ⁻²)	645	2566	4382

- Excellent toughening seen in VER resin cured with IS300
- •Slightly different morphology with LV4 due to elevated temperature/differing cure kinetics
- •IS300 cure alleviates viscosity concerns allowing for infusion at elevated temperatures

Cook Composite
Epovia KRF1001 VE resin


VER Infusion Systems

4 Point Bending Fatigue Testing- Infused Composite Samples

Stress Level	Thousands of Cycles			
	A- Control VER	B - VER with 3% LV1	C- VER with 3% LV1 and IS300	
430 MPa	72 ± 26	119 ± 39	129 ± 50	
350 MPa	199 ± 121	335 ± 88	847± 180	
300 MPa	675 ± 113	938 ± 125*	>1000**	

^{*3} out of 4 samples do not fail at 1 Million Cycles

^{**}No samples fail at 1 Million Cycles

- •Clear benefit of LV1 at 3% to increase fatigue life over unmodified VER
- •Advantage more pronounced when used with IS300

Cook Composite
Epovia KRF1001 VE resin

Summary/ Path Forward

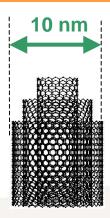
Summary

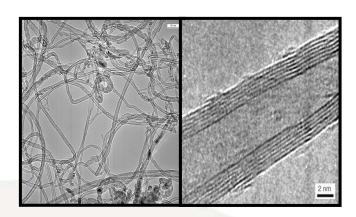
- Block copolymers allow for toughening of thermoset resins with little effect on modulus, strength or thermal properties
- The use of diblocks with low MW, low T_g miscible blocks allows for the use of block copolymers in viscosity sensitive applications
- Careful design of block copolymer architecture to achieve vesicle morphology allows for toughening at very low loading levels
- Nanostrength® block copolymers can bring value to wind energy applications by increasing the toughness of resins used for adhesives and composites

Path Forward

- Application testing in composite systems
- Structure property relationship for nanorubber for fatigue performance
- Application screening in wind blade composites and adhesives

For more information, please contact: Robert Barsotti, robert.barsotti@arkema.com, 610-878-6028




Arkema Technologies for Wind Energy

Multi-Walled Carbon Nanotubes

Low-Weight/High-Strength

Controlled Radical Polymerization

Reactivity Controller for Efficient Infusion of UPR and VER

Aqueous PVDF Coating Technology

Increased Reliability

Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Since the conditions and methods of use of the product and of the information referred to herein are beyond our control, Arkema expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE GOODS DESCRIBED OR THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be applicable when such product is used in combination with other materials or in any process. The user should thoroughly test any application before commercialization. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent, and the user is advised to take appropriate steps to be sure that any proposed use of the product will not result in patent infringement.

© 2010 Arkema Inc. all rights reserved

Nanostrength®, Graphistrength®, Kynar Aquatec® and Blocbuilder® are registered Trademarks of Arkema. Jeffamine® is a registered Trademark of Huntsman Petrochemical Corp.

